TIME-TRIGGERED SERVICES FOR SPACEWIRE

Session: Networks and Protocols

Long Paper

Wilfried Steiner, Reinhard Maier TTTech Computertechnik AG, Vienna, Austria David Jameux European Space Agency ESTEC, Noordwijk, The Netherlands Astrit Ademaj Vienna University of Technology, Vienna, Austria E-mail: wilfried.steiner@tttech.com, reinhard.maier@tttech.com, david.jameux@esa.int, astrit.ademaj@vmars.tuwien.ac.at

ABSTRACT

Modern computer network architectures introduce dedicated network components like routers to reduce the number of communication links in the system. Nodes will then connect to a router, for example, instead of connecting directly to each other with individual point-to-point communication links. Besides the obvious weight and cost reduction of this architectural approach, additional media access logic has to be realized in order to establish a mutually exclusive access of the nodes to the communication links, which become a shared network resource.

In the simplest form, the media access logic implements an event-triggered principle, in which a node is free to access the network at arbitrary points in time and in which the nodes are serviced on a first-come first-served basis. An immediate drawback of this event-triggered principle is the cumulative transmission delay and jitter, when several nodes need to communicate onto the same shared communication link. The time-triggered principle constitutes a media access logic that uses a system-wide synchronized time-base to provide coordination between nodes in a distributed computer system, such that transmission delay and jitter are kept within low bounds.

This paper presents the outcome of an ESA-funded study on investigating the general applicability of time-triggered services for the SpaceWire protocol as well as identifying resulting constraints on SpaceWire Nodes and Routers. As a general outcome of this study we conclude that time-triggered services seamlessly integrate with the SpaceWire protocol which already provides synchronization primitives, so called Time Codes that can be leveraged to establish a system-wide synchronized time-base.